
JOBINTECH
Architecture logicielle

Ahmed Laatabi
a●laatabi{at}umi●ac●ma

ENSAM - Meknès
2025-2026

Logiciel
• Un logiciel (software) est un ensemble de programmes, de données, et de règles qui permettent à un

appareil informatique (ordinateur, smartphone, …) de fonctionner et d'exécuter des tâches
spécifiques. Il se compose d'une suite d'instructions (code), écrites dans un langage de
programmation, qui implémentent un ou plusieurs algorithmes.

• Le matériel (hardware) est l'ensemble des composants physiques et électroniques d'un système
informatique (carte mère, disque dur, …) qui sert de support et permet l'exécution des logiciels.

Système informatique = Software (immatériel) + Hardware (matériel).

• Le système informatique est l’une des composantes principales du système d’information (SI).

• Le SI est l’ensemble organisé de ressources matérielles, logicielles, humaines et organisationnelles
permettant la collecte, le stockage, le traitement et la diffusion de l’information (les données)
nécessaire au fonctionnement et à la prise de décision au sein d’une organisation.

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 2

Architecture logicielle

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 3

• L’architecture logicielle décrit, schématise et documente l’ensemble des éléments (ou composantes) d’un
système informatique ainsi que leurs interactions (ou relations) en termes d’échanges et d’entrées/sorties.

• Son objectif est de définir la structure, les modèles, et les solutions (technologies) nécessaires pour répondre
aux besoins du client et assurer la cohérence, la fiabilité, et l'évolutivité du système.

• Une bonne architecture logicielle doit garantir les qualités non fonctionnelles du système :
• Maintenabilité : facilité de corriger, modifier, ou faire évoluer le logiciel.
• Performance : rapidité et efficacité d'exécution.
• Scalabilité : capacité à s’adapter à une charge croissante de données et de trafic.
• Sécurité : protection des données et des processus.

• Les architectures logicielles modernes tendent à adopter une séparation en modules (ou couches) : 1)
interface utilisateur (couche de présentation); 2) processus métiers (couche logique); 3) persistance des
données (couche d’accès aux données).

Architecte logiciel

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 4

• L’architecte logiciel est le concepteur de haut niveau du système. Son rôle consiste à :

• Définir la structure globale et les principes de conception du logiciel :

• Choisir les technologies, les styles d'architecture (monolithique, microservices, ...), les
patterns (modèles de conception) et les normes à suivre.

• Coordonner entre les équipes non techniques (produit, direction) et les équipes
techniques (développement, test, déploiement).

• Garantir l'intégration et la cohérence entre les différents modules du logiciel, assurant
ainsi qu'il réponde aux besoins clients et au cahier des charges.

• Architecte logiciel : conçoit le plan stratégique du logiciel avant sa construction. Il produit
des documents et des diagrammes qui répondent au “quoi ?” (structure et règles).

• Ingénieur logiciel / Développeur : construit et implémente le logiciel en suivant ce plan. Il se
concentre sur le “comment ?” (algorithmes, codes, et implémentation).

Principes fondamentaux

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 5

• Principes structurels : qualités non fonctionnelles à maximiser.
• Séparation des préoccupations (separation of concerns) : le système est divisé en modules, chacun

ayant une responsabilité unique et bien définie. Les composantes du même module doivent être
fortement liées et cohérentes (high cohesion) → modularité et maintenabilité.

• Modularité : les modules qui composent le système sont indépendants et peuvent être
développés, testés et déployés de manière autonome et parallèle. Chaque module doit
encapsuler sa complexité, qui doit être abstraite aux interactions → évolutivité, interopérabilité
et réduction des coûts.

• Couplage Faible (low coupling) : les dépendances entre les modules doivent être minimales pour
éviter les erreurs inter-modules. chaque module doit pouvoir évoluer indépendamment afin de
faciliter les corrections ou l’ajout de nouvelles fonctionnalités → interopérabilité et scalabilité.

• Principes de conception (design principles) : règles à suivre pour répondre aux besoins fonctionnels.
• KISS (Keep It Simple & Stupid) : toujours privilégier la solution la plus simple qui fonctionne.
• DRY (Don't Repeat Yourself) : les données et les logiques ne doivent pas être dupliquées.
• YAGNI (You Aren't Gonna Need It) : éviter d’implémenter des données ou logiques inutiles.

SOLID

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 6

SOLID regroupe cinq principes de conception à suivre pour produire de bonnes architectures logicielles
(code compréhensible, flexible et maintenable), notamment en programmation orienté objet :

• Single responsibility (responsabilité unique) : une fonction ou une classe ne doit avoir qu’une seule
responsabilité (un seul rôle, objectif).

• Open/closed (ouvert/fermé) : une fonction ou une classe doit être fermée à la modification mais
ouverte à l'extension : ajout de nouvelles fonctionnalités sans modifier le code existant.

• Liskov substitution (substitution de Liskov) : une instance de type de base doit pouvoir être remplacée
par une instance de l’un de ses sous-types sans altérer le bon fonctionnement du programme. Les
sous-classes peuvent donc être utilisées de manière interchangeable avec leurs classes parentes.

• Interface segregation (ségrégation des interfaces) : préférer la définition de plusieurs interfaces
spécifiques plutôt qu'une seule interface générale. Ainsi, les classes ne dépendent que des méthodes
dont elles ont besoin, ce qui réduit les couplages inutiles.

• Dependency inversion (inversion des dépendances) : il faut dépendre des abstractions, pas des
implémentations (les modules de haut niveau ne doivent pas dépendre des modules de bas niveau,
mais tous deux doivent dépendre d’abstractions).

Responsabilité unique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 7

“A class should have only one reason to change”

- Une fonction permet de récupérer (depuis le
clavier) les informations d’un étudiant (CNE,
nom complet, date de naissance) puis de les
enregistrer dans une BD.

- Cette fonction a deux raisons de changer (car
elle a deux responsabilités distinctes) :

- Si l’on souhaite récupérer une donnée
supplémentaire (lieu de naissance).

- Si l’on souhaite modifier le mécanisme
d'enregistrement des données :

- MySQL → MongoDB.

?

Responsabilité unique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 8

• Le principe de responsabilité unique (SRP) exige
qu’un changement de nature n’affecte qu’une seule
composante.

• Ici, les deux fonctions dépendent directement de la
même structure de données (cne, nom_complet,
date_naissance, ...).

• Si la structure des données change → il faut
modifier les deux fonctions (violation du SRP).

• L’utilisation des fonctions simples, couplées
fortement aux détails de la structure de données,
limite l’implémentation correcte du principe de
responsabilité unique.

• Il faut que les deux fonctions dépendent d’une
interface ou d’abstraction commune (un objet), et
non directement de ses champs (structure interne).

?

Ouvert/fermé

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 9

• Une fois qu’une classe ou une fonction a été testée et validée, elle ne doit plus être modifiée,
mais seulement étendue pour ajouter de nouvelles fonctionnalités.

Substitution de Liskov

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 10

• Bonne utilisation de l'héritage : si G est un sous-type de T, alors tout objet de type T peut être
remplacé par un objet de type G sans altérer les propriétés désirables du programme.

→ les classes dérivées G ne doivent pas casser le code qui utilise les classes de base T.

POO

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 11

• L'héritage permet à une classe (classe fille,
classe dérivée, sous-classe) d'acquérir et
réutiliser les propriétés (attributs) et les
comportements (méthodes) d'une autre
classe (classe mère, classe de base,
super-classe), tout en ajoutant ou modifiant
des fonctionnalités : class Etudiant2
(Etudiant).

• Le polymorphisme (multiples formes)
permet de traiter des objets de types
différents via une interface unique : une
même méthode peut se comporter
différemment selon l’objet sur lequel elle
est appelée.

Interface

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 12

• L’interface est un concept fondamental
de la programmation orientée objet
(POO).

• Elle définit un ensemble de méthodes
publiques (et parfois de constantes)
qu’une classe doit implémenter.

• Toute classe qui implémente cette
interface doit fournir une définition pour
chacune de ces méthodes.

• C’est un moyen d’abstraction : on se
concentre sur ce qu’une classe doit faire
(le comportement), plutôt que sur la
manière dont elle le fait
(l’implémentation).

Ségrégation des interfaces

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 13

• Un objet ne doit pas dépendre de
méthodes qu’il n’utilise pas.

• Il est préférable de diviser une
interface générale (monolithique)
en plusieurs interfaces
spécifiques et ciblées.

• Chaque objet n’implémente et
n’accède qu’aux méthodes qui le
concernent, évitant les
dépendances inutiles.

• La classe EnregistreurMySQL doit
implémenter la méthode afficher()
dont il n’aura jamais besoin !

Inversion des dépendances

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 14

• Les modules de haut niveau ne doivent pas dépendre des modules de bas niveau. Les deux
doivent dépendre d'abstractions.

• Les abstractions ne doivent pas dépendre des détails, mais l’inverse.

• La fonction d’enregistrement d’un étudiant (haut niveau) dépend directement de la logique
spécifique à MySQL (bas niveau) → changer de BD obligerait à modifier cette fonction.

• Solution : inverser la dépendance pour que le code bas niveau (MySQL, MongoDB, …) dépende
d’une abstraction définie au niveau supérieur (enregistrement d’un étudiant).

UML/JAVA

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 15

Application

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 16

Réaliser un petit projet Java qui respecte les principes SOLID

Nous souhaitons modéliser une entité Etudiant et son sous-type
EtudiantUMI, qui introduit un attribut supplémentaire. Le programme
doit permettre d'afficher et de sauvegarder (simulé simplement par un
affichage à l’écran, pour le moment!) les informations des étudiants vers
des différentes BD (MySQL, MongoDB).

Architecture monolithique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 17

• L’architecture monolithique est le modèle traditionnel où toutes les
fonctionnalités d’une application sont regroupées dans une seule unité:

• Un seul exécutable, un seul répertoire de code source, une seule BD.
• Les composantes sont étroitement couplées.
• Application autonome et indépendante.

• Facile à prendre en main, rapide à développer (au début), simple à
déployer.

• Un changement de code → reconstruire et redéployer toute l’application.
• Complexité de mises à jour et d’ajout de nouvelles fonctionnalités, en

particulier avec des applications volumineuses.
• Difficile de faire évoluer une seule fonctionnalité indépendamment.

• Les architectures moderne → décomposition en services / fonctionnalités
spécialisés et faiblement couplés → agilité, flexibilité, et évolutivité.

Architecture monolithique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 18

source : microservices.io

Une application e-commerce est déployée
comme une seule application monolithique.
Les trois fonctionnalités métiers sont :

• Prise de commandes.
• Vérification de l’inventaire (stock) et du

crédit disponible.
• Expédition des commandes clients.

Toutes les composantes, y compris
l’interface utilisateur (StoreFrontUI) et les
services backend (gestion du crédit,
inventaire, expédition) sont regroupées
dans un même projet.

→ Par exemple, une application Java peut
être déployée dans un seul fichier WAR sur un
serveur Tomcat.

Architecture en micro services

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 19

• Une architecture microservices divise une application
en fonctionnalités encapsulées au sein de petits
services autonomes et faiblement couplés.

• Chaque services est géré (test, déploiement, …) et
évolue (MAJ, extension, ..) indépendamment des
autres.

• Un microservice a son propre objectif : gestion
des utilisateurs, paiement, ….

• Un microservice a sa propre logique métier et sa
propre BD.

• Un microservice peut être implémenté dans un
langage de programmation différent des autres.

• Les microservices communiquent entre eux à l’aide
d’interfaces de programmation d’application (API)
indépendantes de tout langage/technologie.

• Un microservice conçu pour une tâche peut être
réutilisé par d’autres applications.

Architecture en micro services

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 20

source : microservices.io

La même application e-commerce
peut être conçue comme un
ensemble de services indépendants.

Chaque service gère une
fonctionnalité spécifique :

• Interface utilisateur.
• Vérification du crédit.
• Gestion de l’inventaire .
• Expédition des commandes.

Les services communiquent entre
eux via des API :

• Mettre à jour, déployer, et faire
évoluer chaque service
indépendamment.

• Agilité et flexibilité par rapport
à la version monolithique.

API
• Une API (Application Programming Interface) est un ensemble de règles et de protocoles qui

permet à deux applications de communiquer et d'échanger des données (intermédiaire, moyen
de communication).

• REST (Representational State Transfer) est une API qui définit la communication entre deux
applications via le protocole HTTP, notamment à travers les requêtes GET et POST.

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 21

API REST

http://localhost:5000/addjs?a=2&b=3

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 22

API REST

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 23

Architectures orientées événements
• Une architecture orientée événements (EDA : Event-Driven Architecture) est un modèle

d’architecture logicielle basé sur la production et la consommation d’événements.
• Événement : action ou changement d’état d’une composante du système.

Exemple : {type: "EtudiantInscrit", EtudCIN: "JK6764"}

• Producteur : composante du système qui émet l’événement.
Exemple : le modèle ou le service d’insertion dans la BD.

• Consommateur : composante qui souscrit à un événement pour effectuer une action.
Exemple : envoyer un SMS de bienvenue au nouvel étudiant inscrit.

• Canal de communication : moyen ou technologie qui permet d’échanger les messages et de
gérer les souscriptions.

• L’EDA est faiblement couplée, et la communication peut être synchrone ou asynchrone.
• Adaptée aux applications modernes, distribuées, et en temps réel.
• Facilement scalable : rajouter de nouveaux producteurs ou consommateurs.

• Une architecture microservices peut être orientée événements.
Ahmed Laatabi | ENSAM - Meknès | 2025-2026 24

Architectures orientées événements

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 25

source : geeksforgeeks

ActiveMQ
• Apache ActiveMQ est un broker de messages open-source implémenté en Java.

• Reçoit des messages des producteurs et les achemine aux consommateurs.

• Permet la communication asynchrone entre différentes applications ou services.
• Supporte de nombreux protocoles standards (OpenWire, MQTT, STOMP, REST, ...), permettant

l'interaction avec des applications hétérogènes (C++, Python, ….).

• Permet de découpler les composantes (microservices) dans une architecture logicielle :
• Les producteurs et les consommateurs échangent sans avoir besoin de se connaître.
• Si une composante tombe en panne, les autres peuvent continuer à fonctionner.
• Les messages et les données échangées sont conservés (persistance) et ne sont pas perdus.

• Queue (Point-à-Point) : un message envoyé à la file n'est reçu que par un seul consommateur. Si
plusieurs consommateurs sont disponibles, ActiveMQ distribue les messages selon une stratégie
de répartition de charge (Round Robin). Persistance par défaut.

• Topic (Publisher/Subscriber) : tous les consommateurs qui se sont abonnés au topic reçoivent
une copie du message qui y est publié. Non persistant par défaut (abonnement durable possible).

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 26

ActiveMQ
> activemq start

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 27

ActiveMQ

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 28

ActiveMQ

Producteur (Python)

Les messages envoyés dans un topic/queue peuvent être lus via REST :
http://localhost:8161/api/message/TEST.TOPIC?type=topic

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 29

ActiveMQ

Consommateur

(Python)

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 30

ActiveMQ

Producteur

(JAVA)

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 31

ActiveMQ

Consommateur

(JAVA)

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 32

Architecture en couches
• L'architecture en couches (Layered Architecture) organise

les composants horizontalement, en couches à
responsabilité unique.

• Chaque couche utilise les services de la couche inférieure
pour offrir des services à la couche supérieure (flux
généralement unidirectionnel).

• La plupart des architectures logicielles sont structurées
en 4 couches principales :

• Présentation (UI) : gère l’interface utilisateur et les
interactions (saisie, affichage, …).

• Métier (Business) : contient la logique métier de
l’application : règles, traitements, calculs, …

• Persistence (Data Access) : assure l’accès aux
données et l’interaction avec le système du stockage.

• BD (Database) : représente le SGBD qui stocke
physiquement les données.

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 33

Couches vs microservices

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 34

source : Munib Butt

CQRS
● L’architecture CQRS (Command Query Responsibility Segregation) sépare les opérations qui modifient l’état

du système (Command) des opérations qui lisent les données sans les modifier (Query).
○ On sépare entre les opérations de lecture (SELECT) de celles d’insertion, MAJ, et suppression.
○ Deux composantes (objet, service) au lieu d’une qui gère les deux types d'opérations à la fois :

■ Command Handler : exécute les requêtes de modification (executeUpdate dans JDBC).
■ Query Handler : exécute les requêtes de lecture (executeQuery dans JDBC).

● Séparation des responsabilités :
○ Meilleure gestion du business logic (séparation).

● Optimisation et scalabilité indépendante :
○ Optimiser chaque composant selon la charge.
○ La lecture est souvent plus fréquente.

● Flexibilité technologique :
○ Utiliser des technologies différentes et optimisées

(traitements) pour chaque composant.

○ Utilisation de BD différentes (SQL, NoSQL).
● Utilisation des Vues dénormalisées :

○ Dans la même BD ou dans une BD différente.
○ Adaptation aux besoins de l'utilisateur (SELECT).

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 35

source : Medium

Vue
● Une vue est une définition stockée d’une requête SQL de type SELECT. Il s’agit d’une table virtuelle

contenant des champs et des colonnes. Elle permet d’éviter de retaper une même requête longue et
complexe (jointures multiples) à chaque fois (une vue = alias permanent d’une requête).
○ CREATE [ou REPLACE] VIEW inscriptions AS

SELECT e.nom AS Nom_Etudiant, f.nom AS Nom_Formation FROM Etudiants e, Formations f
WHERE e.id_formation = f.d;

○ → SELECT * from inscriptions;

● Une vue matérialisée stocke physiquement le résultat
d’une requête → très rapide mais consomme de
l’espace de stockage et peut devenir obsolète.

● Mise à jour des vues (dans le contexte CQRS) :
○ Le modèle d’écriture produit des événements :

etudiant_created, formation_validated.

○ Le modèle de lecture met à jour les vues à partir
de ces événements → eventually consistent !

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 36

source : QuestDB

CQRS

Le broker reçoit les messages de modification (create, update, delete) relatifs aux tables, les persistent pendant une durée
limitée, et les achemine aux consommateurs (subscribers) intéressés : exactement une fois (éviter la duplication des

traitements), et dans l’ordre (crucial pour la consistance). Grâce à la persistance, les applications disposent de temps pour
propager les modifications (tolérance aux pannes, gestion de la charge, cohérence éventuelle).

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 37

source : aws.amazon

Architecture Hexagonale (Ports & Adapters)

• L’architecture hexagonale (Ports and Adapters) permet de créer des composants faiblement
couplés. Elle repose sur la séparation du core de l’application des systèmes externes (BD, UI,
services tiers) :

• Noyau (Core) : contient la logique métier pure et ne dépend pas de l’extérieur.
• Ports : les interfaces (contrats) définies et exposées par le noyau pour communiquer en

entrée (recevoir des commandes pour lancer un processus métier : créer un étudiant) et en
sortie (émettre des commandes : requête vers une BD, appeler un service tiers).

• Adaptateurs : les implémentations (situées à l’extérieur du noyau) concrètes des ports pour
agir comme des intermédiaires entre le noyau et l’extérieur (adapter le format des données,
traduire des objets en requêtes SQL, …).

• Isolation complète de la logique métier.
• Scalabilité et maintenabilité faciles : on ne change pas la logique métier, mais uniquement les

adaptateurs, pour migrer par exemple de MySQL vers MongoDB.
• Enregistrement d’un nouvel étudiant : le noyau exprime un besoin, le port de sortie définit

l’opération (quoi), l’adaptateur fournit l’implémentation (comment).

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 38

Architecture Hexagonale (Ports & Adapters)

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 39

source : happycoders

JPA Hibernate
• La mapping Objet-Relationnel (ORM : Object-Relational Mapping) est le processus de faire correspondre

des objets Java et des tables de BD.
• Interagir avec la BD sans écrire des requêtes SQL (générées par l’ORM).

• L'API de Persistance Java (JPA : Java Persistence API) est la spécification qui définit comment persister
des données dans Java.

• Hibernate est le framework ORM Java les plus populaire qui implémente la spécification JPA.
• Encapsulation des requêtes SQL.
• Gestion des transactions et des relations entre les entités.

• Un fichier de configuration XML (hibernate.cfg.xml) est une des méthodes pour configurer Hibernate :
il contient les détails de connexion, les classes à mapper, et d’autres paramètres.

• Une classe Java est mappée à une table via l’annotation @Entity :
• @Table (name = “nom_table”) : spécifie le nom de la table si différent du nom de la classe.
• @Id : marque la clé primaire de l’entité.
• @GeneratedValue(strategy = GenerationType.IDENTITY) : indique que le ID est généré

automatiquement par la BD (AUTO_INCREMENT !).

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 40

JPA Hibernate

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 41

source : medium

JPA Hibernate

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 42

JPA Hibernate

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 43

JPA Hibernate
• Quand le nom d’un champ dans la base de données est différent de l’attribut de la classe Java, on

utilise l’annotation : @Column(name = "nom_champ_table").
• On peut fournir les informations utiles à la génération du DDL si Hibernate est utilisé pour créer

automatiquement les tables : @Column(name="nom", length=20, nullable=false).

• On peut interagir avec la BD en utilisant HQL (Hibernate Query Language) : un langage orienté objet qui
manipule les objets Java, non pas les tables de la BD (Hibernate traduit ensuite en SQL).

• Récupérer toutes les lignes :
List<Etudiant> list = session.createQuery("FROM Etudiant", Etudiant.class).list();

• Filtrer :
Etudiant etu = session.createQuery("FROM Etudiant e WHERE e.id = :id", Etudiant.class)

.setParameter("id", 21).uniqueResult();
• Projeter :
List<String> noms = session.createQuery("SELECT e.nom FROM Etudiant e", String.class).list();

• Trier :
List<Etudiant> list = session.createQuery("FROM Etudiant e ORDER BY e.age ASC", Etudiant.class).list();

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 44

JPA Hibernate
• Les annotations de jointure servent à définir les relations entre les entités et leur mapping dans la BD.
• @OneToOne : une liaison 1-1 entre deux entités. La FK est dans la table de la classe annotée.

@OneToOne
@JoinColumn(name = "mon_entité_id")
private Entité mon_entité;

• @ManyToOne : une liaison N-1 (plusieurs entités liées à une seule autre). La FK est dans la table de la
classe annotée (côté “N”).

@ManyToOne
@JoinColumn(name = "formation_id")
private Formation formation;

• On peut écrire une requête HQL avec jointure pour récupérer les objets liés :
List<Object[]> results = session.createQuery("FROM Etudiant e INNER JOIN e.formation f").list();
for (Object[] res : results) {

Etudiant e = (Etudiant) res[0];
Formation f = (Formation) res[1];
System.out.println(e.getNom() + " :: " + f.getNom());

 }
Ahmed Laatabi | ENSAM - Meknès | 2025-2026 45

Exercice
Projet Hibernate-MySQL-CQRS-ActiveMQ

Mettre en place un projet Java utilisant Hibernate/JPA, CQRS et messaging avec ActiveMQ pour gérer les
inscriptions d’étudiants dans des formations.
Le projet doit séparer les responsabilités d’écriture (Command) et de lecture (Query) et garantir que la vue
des inscriptions deviendra éventuellement à jour après chaque modification.

• Etudiant (id, nom, prenom, formation_id)
• Formation (id, nom)
• Inscriptions (id, etudiant_id, formation_id, nom_complet_etudiant, nom_formation) : table SQL pour

simuler une vue matérialisée (ici, dans la même BD).

• Modèle d’écriture (Command) : gère la modification des tables Etudiant et Formation et notifie le
service de lecture (produit/publie un événement) via ActiveMQ (violation de SRP !).

• Modèle de lecture (Query) : consomme les événements, met à jour la vue Inscriptions et fournit les
requêtes de lecture (les lectures se font uniquement via la vue Inscriptions) (violation de SRP !).

• Les factory de connexions à la BD et à ActiveMQ sont centralisées : les objets SessionFactory
(Hibernate) et ActiveMQConnectionFactory sont des singletons.

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 46

