I 1 Y
Jeslowl glga dadln |) %oy Lo agaog duyml
UNIVERSITE MOULAY ISMAIL FCOLE MTIONALE SUPERIEURE DARTS 1 METIERS

JOBINTEGH

Architecture logicielle

Ahmed Laatabi
delaatabif{at}umisacema
ENSAM - Meknés
2025-2026

Logiciel

« Un logiciel (software) est un ensemble de programmes, de données, et de régles qui permettent a un
appareil informatique (ordinateur, smartphone, ...) de fonctionner et d'exécuter des taches
spécifiques. Il se compose d'une suite d'instructions (code), écrites dans un langage de
programmation, qui implémentent un ou plusieurs algorithmes.

« Le matériel (hardware) est l'ensemble des composants physiques et électroniques d'un systéme
informatique (carte mere, disque dur, ...) qui sert de support et permet ['exécution des logiciels.

Systéme informatique = Software (immatériel) + Hardware (matériel).

« Le systéme informatique est 'une des composantes principales du systéme d’'information (SI).

« Le Sl est 'ensemble organisé de ressources matérielles, logicielles, humaines et organisationnelles
permettant la collecte, le stockage, le traitement et la diffusion de linformation (les données)
nécessaire au fonctionnement et a la prise de décision au sein d'une organisation.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 2

Architecture logicielle

« L'architecture logicielle décrit, schématise et documente ['ensemble des éléments (ou composantes) d'un
systéme informatique ainsi que leurs interactions (ou relations) en termes d'échanges et d'entrées/sorties.

« Son objectif est de définir la structure, les modeles, et les solutions (technologies) nécessaires pour répondre
aux besoins du client et assurer la cohérence, la fiabilité, et ['évolutivité du systeme.

« Une bonne architecture logicielle doit garantir les qualités non fFonctionnelles du systeme :
« Maintenabilité : facilité de corriger, modifier, ou faire évoluer le logiciel.
« Performance : rapidité et efficacité d'exécution.
« Scalabilité : capacité a s'adapter a une charge croissante de données et de trafic.
« Sécurité : protection des données et des processus.

« Les architectures logicielles modernes tendent 3 adopter une séparation en modules (ou couches) : 1)
interface utilisateur (couche de présentation); 2) processus métiers (couche logique); 3) persistance des
données (couche d'accés aux données).

Architecte logiciel

« L'architecte logiciel est le concepteur de haut niveau du systeme. Son réle consiste a:
« Définir la structure globale et les principes de conception du logiciel :

« Choisir les technologies, les styles d'architecture (monolithique, microservices, ...), les
patterns (modeles de conception) et les normes a suivre.

« Coordonner entre les équipes non technigues (produit, direction) et les équipes
techniques (développement, test, déploiement).

« Garantir l'intégration et la cohérence entre les différents modules du logiciel, assurant
ainsi qu'il réeponde aux besoins clients et au cahier des charges.

« Architecte logiciel : concoit le plan stratégique du logiciel avant sa construction. Il produit
des documents et des diagrammes qui répondent au “quoi 7' (structure et regles).

* Ingénieur logiciel / Développeur : construit et implémente le logiciel en suivant ce plan. Il se
concentre sur le “comment 7’ (algorithmes, codes, et implémentation).
4

Principes fondamentaux

« Principes structurels : qualités non fonctionnelles a maximiser.
« Séparation des préoccupations (separation of concerns) : le systeme est divisé en modules, chacun

ayant une responsabilité unique et bien définie. Les composantes du méme module doivent étre
fortement liées et cohérentes (high cohesion) — modularité et maintenabilité.

« Modularité : les modules qui composent le systeme sont indépendants et peuvent étre
développés, testés et déployés de maniere autonome et parallele. Chaque module doit

encapsuler sa complexité, qui doit étre abstraite aux interactions — évolutivité, interopérabilité
et réduction des colts.

« Couplage Faible (low coupling) : les dépendances entre les modules doivent étre minimales pour
éviter les erreurs inter-modules. chaque module doit pouvoir évoluer indépendamment afin de
fFaciliter les corrections ou ['ajout de nouvelles fonctionnalités — interopérabilité et scalabilité.

« Principes de conception (design principles) : régles a suivre pour répondre aux besoins fonctionnels.
« KISS (Keep It Simple & Stupid) : toujours privilégier la solution la plus simple qui fonctionne.
« DRY (Don't Repeat Yourself) : les données et les logiques ne doivent pas étre dupliquées.
« YAGNI (You Aren't Gonna Need It) : éviter d'implémenter des données ou logiques inutiles.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 5

SOLID

SOLID regroupe cing principes de conception a suivre pour produire de bonnes architectures logicielles
(code compréhensible, flexible et maintenable), notamment en programmation orienté objet :

« Single responsibility (responsabilité unique) : une fonction ou une classe ne doit avoir qu'une seule
responsabilité (un seul réle, objectif).

« Open/closed (ouvert/fermé) : une fonction ou une classe doit étre fermée a la modification mais
ouverte a l'extension : ajout de nouvelles fonctionnalités sans modifier le code existant.

« Liskov substitution (substitution de Liskov) : une instance de type de base doit pouvoir étre remplacée
par une instance de 'un de ses sous-types sans altérer le bon fonctionnement du programme. Les
sous-classes peuvent donc étre utilisées de maniere interchangeable avec leurs classes parentes.

« Interface segregation (ségrégation des interfaces) : préférer la définition de plusieurs interfaces
spécifiques plutét qu'une seule interface générale. Ainsi, les classes ne dépendent que des méthodes
dont elles ont besoin, ce qui réduit les couplages inutiles.

« Dependency inversion (inversion des dépendances) : il faut dépendre des abstractions, pas des
implémentations (les modules de haut niveau ne doivent pas dépendre des modules de bas niveau,
mais tous deux doivent dépendre d'abstractions).

Responsabilité unique

“A class should have only one reason to change”

- Une fonction permet de récupérer (depuis le
clavier) les informations d'un étudiant (CNE,
nom complet, date de naissance) puis de les
enregistrer dans une BD.

- Cette fonction a deux raisons de changer (car
elle a deux responsabilités distinctes) :

def saisir et enregistrer etudiant():
cne = input("CNE : ")
nom _complet = input ("Nc comples . .Y
date_naissance = input("Dats = naissance : ")

print ("Enregistrement dans MySQL...")
print (f"INSERT INTC estudiant VALUES cne B
nom complet date_naissance)

saisir et enregistrer etudiant()

- Si l'on souhaite récupérer une donnée
supplémentaire (lieu de naissance).

- Si l'on souhaite modifier le mécanisme

def saisir etudiant():

cne = input ("CNE : ") 7

nom complet = input ("l oln) A)
date naissance = input("Date de naissance : ")
return cne, nom complet, date naissance

d'enregistrement des données:
- MySQL — MongoDB.

print (‘ .;,-, - - s = -— - - - - =
print (£"INSERT INTC v
nom complet

def enregistrer etudiant(cne, nom complet, date naissance):

aite)
ALUES cne
date_naissance Fr)

cne, nom complet, date_naissance = saisir etudiant()
enregistrer etudiant (cne, nom complet,

date_naissance)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

Responsabilité unique

« Le principe de responsabilité unique (SRP) exige
qu’'un changement de nature n'affecte qu’'une seule
composante.

« Ici, les deux fonctions dépendent directement de la
méme structure de données (cne, nom_complet,
date naissance, ...).

« Si la structure des données change — il faut
modifier les deux fonctions (violation du SRP).

« Lutilisation des fonctions simples, couplées
fortement aux détails de la structure de données,
limite limplémentation correcte du principe de
responsabilité unique.

« |l faut que les deux fonctions dépendent d'une
interface ou d'abstraction commune (un objet), et
non directement de ses champs (structure interne).

class Etudiant:
def init__ (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

objet --> dictionnaire
def to_dict(self):
return { :’
=": self.cne, ®

: self.nom complet,
: self.date_naissance

def saisir etudiant():

cne = input ("Cl :)
nom complet = input("! ple :)
date_naissance = input("Dats = 3=) e)

return Etudiant (cne, nom complet, date_naissance)

def enregistrer etudiant (etudiant):
data = etudiant.to_dict()
print ("Enregistreme MySQL..."™)
print (= T IN] =1 Lant ALUE
.jJoin([repr(v) for v in data.values()])

etu = saisir etudiant()
enregistrer_etudiant(etu)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

Ouvert/fermé

« Une fois qu'une classe ou une fonction a été testée et validée, elle ne doit plus étre modifiée,
mais seulement étendue pour ajouter de nouvelles fonctionnalités.

class Etudiant:
def init__ (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

objet --> dictionnaire
def to_dict(self):

return {
"cne": self.cne,

mplet”: self.nom complet,
"date naissance": self.date_naissance

def saisir_etudiant():
crne = input{“CNE : %)
nom complet = input("Nom complst : ")
date_naissance = input("Date d= naissance : ")
return Etudiant (cne, nom complet, date_naissance)

def enregistrer etudiant(etudiant):
data = etudiant.to_dict()
print ("Enregistrement dans MySQL...")
print (£f"INSERT INTO studiant VALUES
£f"{', '.join([repr(v) for v in data.values()]):!):;")

class Etudiant2 (Etudiant):

def

etu

def init (self, cne, nom complet, date_naissance,
lieu naissance):
super (). init (cne, nom complet, date naissance)
self.lieu naissance = lieu naissance

def to_dict (self):
data = super().to_dict()
data["li=su_naissance"] = self.lieu naissance
return data

saisir etudiant2():

etud = saisir_etudiant()

lieu naissance = input("Lisu de naissance : ")

return Etudiant2 (etud.cne, etud.nom complet, etud.date_naissance,
lieu naissance)

= saisir etudiant2()

enregistrer etudiant (etu)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 9

Substitution de Liskov

« Bonne utilisation de ['héritage : si G est un sous-type de T, alors tout objet de type T peut étre
remplacé par un objet de type Gsans altérer les propriétés désirables du programme.

— les classes dérivées G ne doivent pas casser le code qui utilise les classes de base T.

class Etudiant:
def init__ (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

f objet --> dictionnaire
def to_dict(self):

return {
y =": self.cne,
o ": self.nom complet,
=": self.date_naissance

def saisir etudiant():
cne = input("CNE : ")
nom complet = input ("Nom complst : ")
date_naissance = input("Date de naissance : ")
return Etudiant (cne, nom complet, date_naissance)

def enregistrer etudiant (etudiant):
data = :tadlant to_dict()
print (" :;;’_-a-a., dans MySQL...")
print (£ T INT =tudiant VAI o

'.join([repr(v) for v in data.values()])

)

class Etudiant2 (Etudiant):
def init__ (self, cne, nom complet, date_naissance,
lieu_naissance):
super()._ init (cne, nom complet, date naissance)
self.lieu naissance = lieu naissance

def to_dict (self):
data = super().to_dict()
data["lisu naissance"] = self.lieu naissance
return data

def saisir etudiant2():
etud = saisir etudiant()
lieu naissance = input("Lisu de naissance : ")

return Etudiant2 (etud.cne, etud.nom complet, etud.date_naissance,

lieu naissance)

etu = saisir etudiant2 ()
enregistrer_ etudiant (etu)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

10

POO

L'héritage permet 3 une classe (classe fille,
classe dérivée, sous-classe) d'acquérir et
réutiliser les propriétés (attributs) et les

comportements (méthodes) d'une autre
classe (classe mere, classe de Dbase,
super-classe), tout en ajoutant ou modifiant
des fonctionnalités class Etudiant?2
(Etudiant).

Le polymorphisme (multiples formes)

permet de traiter des objets de types
différents via une interface unique : une
méme méthode peut se comporter
différemment selon ['objet sur lequel elle
est appelée.

class Etudiant:
def init (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

def afficher (self):
print (f"CNE : self.cne self.nom complet
f"De 3 self.date_naissance!")
class Etudiant2 (Etudiant):
def init_ (self, cne, nom complet, date naissance,
lieu naissance):
super()._ init (cne, nom complet, date_naissance)
self.lieu naissance = lieu naissance

def afficher (self):

print (f"CNE : {self.cne self.nom complet
f"De nai an self.date_naissance
self.lieu naissance!")
etudiants = |
Etudiant ("123", "Moha Sage", ")
Etudiant2 ("45¢6", "Moha Fou", "12/05/88", "Maroc")

]

for etu in etudiants:
etu.afficher ()

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 11

Interface

« Linterface est un concept fondamental
de la programmation orientée objet
(POO).

« Elle définit un ensemble de méthodes
publiques (et parfois de constantes)
gu’une classe doit implémenter.

« Toute classe qui implémente cette
interface doit fournir une définition pour
chacune de ces méthodes.

« (C'est un moyen d’abstraction : on se
concentre sur ce qu'une classe doit faire
(le comportement), plutdét que sur la
maniere dont elle le fait
(limplémentation).

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

class interface interface
A
extends | implements extends
|
class class interface
class EnregistreurEtudiant:
#Enregistrer un é€tudiant, gquelle gue soit la BD

def enregistrer(self, etudiant):
raise NotImplementedError

class EnregistreurMySQL (EnregistreurEtudiant):
def enregistrer(self, etudiant):
data = etudiant.to_dict()

print (f"En:
print (f"INSEE

")

.jJoin([repr(v) for v in data.values()])

12

Ségrégation des interfaces

« Un objet ne doit pas dépendre de
méthodes qu'il n'utilise pas.

« |l est préférable de diviser une
interface générale (monolithique)
en plusieurs interfaces
spécifigues et ciblées.

« Chaque objet n'implémente et
n'‘accede qu'aux méthodes qui le
concernent, évitant les
dépendances inutiles.

* La classe EnregistreurMySQL doit
implémenter la méthode afficher()
dont il n’aura jamais besoin !

class EnregistreurEtudiant (ABC) :

def enregistrer(self, etudiant):
pass

def afficher(self, etudiant):
pass

class EnregistreurMySQL (EnregistreurEtudiant):
def enregistrer(self, etudiant):
data = etudiant.to_dict()
print (f"Enregistrement dans vSQL...")
print (: I =tudiant VA2 ES
.Join([repr(v) for v in data.values()])

def afficher(self, etudiant):
print (f"{etudiant.nom complet etudiant.cne
Y] etudiant.date naissance!")

def enregistrer etud(etudiant: Etudiant,
enregistreur: EnregistreurEtudiant):
enregistreur.enregistrer (etudiant)

etud = Etudiant (" 2 Franz afka", "0l] =In)
enregistrer etud(etud, EnregistreurMySQL())

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 13

Inversion des dépendances

* Les modules de haut niveau ne doivent pas dépendre des modules de bas niveau. Les deux

doivent dépendre d'abstractions.

« Les abstractions ne doivent pas dépendre des détails, mais l'inverse.

« La fonction d’enregistrement d'un étudiant (haut niveau) dépend directement de la logique
spécifique a MySQL (bas niveau) — changer de BD obligerait a modifier cette fonction.

« Solution : inverser la dépendance pour que le code bas niveau (MySQL, MongoDB, ...) dépende
d'une abstraction définie au niveau supérieur (enregistrement d’'un étudiant).

class EnregistreurEtudiant:
#Enregistrer un étudiant, quelle que soit la BD
def enregistrer (self, etudiant):
raise NotImplementedError |

class EnregistreurMySQL (EnregistreurEtudiant):
def enregistrer (self, etudiant):
data = etudiant.to_dict()
print (f"Enregistrement ans MySQL...")
print (I’ SER] I =tudiant VALUES
3 .Join([repr(v) for v in data.values()])

class EnregistreurMongoDB (EnregistreurEtudiant):
def enregistrer(self, etudiant):
data = etudiant.to_dict()
print (f"f =G 3 rement 31 goDB...")
print (f"db.etudiants.insert one data)

def enregistrer etud(etudiant: Etudiant,
enregistreur: EnregistreurEtudiant):
enregistreur.enregistrer (etudiant)

etud = Etudiant (" N Franz afka", | i i)
enregistrer etud(etud, EnregistreurMySQL())
enregistrer etud(etud, EnregistreurMongoDB())

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 14

IMylnterface.java:

UML/JAVA

String g=
int 1= 0;

«Java Class»

(® SuperTestClass
ajint
ar:int

& name : String
@ getName ()

«Java Class»

(3 SubTestClass
aj:int
a rint

& name : String
@ getMName ()

SuperTestClass.java:

public class SuperTestClass {
int 1 : 3
Intox 5
String name ="myName";

public wvoid getName(){
g

SubTestClass.java:

public class SubTestClasss
extends SuperTestClass {
int 1 = 2;
int r = 3;
String name ="myName";

public wvoid getName(){
2

{AbstractClassF .java:

public class AbstractClassF

=

public interface MyInterface {

public void charge (int =)

implements MyInterface {

public void charge({int =){

«Java Interface»
O Myinterface
o g String

o j:int

@ charge ()

«Java Class»
(3 AbstractClassF

® charge ()

«Java Class»
(® OwnedClass

1
- associatedClass

«Java Class»
(3 OwnerClass

1
+ otherClass

Ahmed Laatabi | ENSAM=MeRNEeS | Z025-Z076

|OwnedClass.Java:
public class OwnedClass {

/f <<class body>>

[OwnerClass.Java:

public class OwnerClass {
private OwnedClass associatedClass;
public QOunerClass otherClass:

/f <<class body>>
3 15

Application

Réaliser un petit projet Java qui respecte les principes SOLID

Nous souhaitons modéliser une entité Etudiant et son sous-type
EtudiantUMI, qui introduit un attribut supplémentaire. Le programme
doit permettre d'afficher et de sauvegarder (simulé simplement par un
affichage a l'écran, pour le moment)) les informations des étudiants vers
des différentes BD (MySQL, MongoDB).

16

Architecture monolithique

'architecture monolithique est le modele traditionnel ou toutes les
fonctionnalités d’'une application sont regroupées dans une seule unité:
« Unseul exécutable, un seul répertoire de code source, une seule BD.
« Les composantes sont étroitement couplées.
« Application autonome et indépendante.

Facile a prendre en main, rapide a développer (au début), simple a
déployer.

Un changement de code — reconstruire et redéployer toute ['application.
Complexité de mises a jour et d'ajout de nouvelles fonctionnalités, en
particulier avec des applications volumineuses.

Difficile de faire évoluer une seule fonctionnalité indépendamment.

Les architectures moderne — décomposition en services / fonctionnalités
spécialisés et fFaiblement couplés — agilité, flexibilité, et évolutivité.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

-

Data
Access
layer

Logic

MONOLITHIC
ARCHITECTURE

17

Architecture monolithique

Une application e-commerce est déployée
comme une seule application monolithique.
Les trois fonctionnalités métiers sont :

« Prise de commandes.

« Vérification de l'inventaire (stock) et du
crédit disponible.

« Expédition des commandes clients.

Toutes les composantes, y compris
'interface utilisateur (StoreFrontUl) et les
services backend (gestion du crédit,
inventaire, expédition) sont regroupées
dans un méme projet.

— Par exemple, une application Java peut
étre déployée dans un seul fichier WAR sur un
serveur Tomcat.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

Traditional web application architecture

Browser [€—> Apache |

Simple to

develop
test
deploy
scale

StoreFrontUI

Accounting

Service

MySQL

Database

InventoryService

Shipping
Service

source : microservices.io

18

Architecture en micro services

« Une architecture microservices divise une application
en fonctionnalités encapsulées au sein de petits
services autonomes et faiblement couplés.

« Chaque services est géré (test, déploiement, ...) et
évolue (MAJ, extension, .) indépendamment des
autres.

« Un microservice a son propre objectif : gestion g of logc o oo o
des uplllsateurs, palement, N _ A " Data _ A AData

« Un microservice a sa propre logique métier et sa Logic ‘::;:sr‘ Logic IZ;‘:‘
propre BD.

« Un microservice peut étre implémenté dans un A A
langage de programmation différent des autres.

« Les microservices communiquent entre eux a l'aide u‘ U— -
d'interfaces de programmation d'application (API) L] |
indépendantes de tout langage/technologie.

« Un microservice concu pour une tache peut étre MICROSERVICE
réutilisé par d'autres applications. ARCHITECTURE

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 19

Architecture en micro services

La méme application e-commerce
peut étre concue comme un
ensemble de services indépendants.

Chaque service gere
fonctionnalité spécifique :

une

« Interface utilisateur.

« Vérification du crédit.

e Gestion de l'inventaire.

« Expédition des commandes.

Les services communiquent entre
eux via des API :

« Mettre a jour, déployer, et faire
évoluer chaque service
indépendamment.

« Agilité et flexibilité par rapport
a la version monolithique.

Browser

source : microservices.io

Account
Service

Inventory
Service

Account
De

(

Shipping
D8

)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

20

API

« Une API (Application Programming Interface) est un ensemble de regles et de protocoles qui
permet a deux applications de communiquer et d'échanger des données (intermédiaire, moyen
de communication).

End User with Server Back-end
Browser System
Request
HTTP Request Response

[=—]

> (—) - o=

4 DI < =)

JSON | XML | HTML L e e Y 4
-
’ = 2
CLIENT REST API SERVER " ' \
! = :
1 Make the Take the 1
: Order Order 1
- L}
! 1
: — e [EEE !
| Delivery of Bringing —_— I
\ order from Kitchen pe=2 e II
\\ Waiter Chef /
7/
N o o o S o o I N B N A A S N N R N R =

« REST (Representational State Transfer) est une APl qui définit la communication entre deux
applications via le protocole HTTP, notamment a travers les requétes GET et POST.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 21

APl REST

* Serving Flask app 'jobintech'’
* Debug mode: off

* Running on http://127.0.0.1:5000

Press CTRL+C to quit

127.0.0.1 — - [11/Nov/2025 13:34:21] "GET /addjs?a=2&b=3 HTTP/1.1" 200 -
127.0.0.1 - — [11/Nov/2025 13:36:08] "GET /addjs?a=2&b=3 HTTP/1.1" 200 -
127.0.0.1 - - [11/Nov/2025 13:36:14] "GET /add?a=2&b=3 HTTP/1.1" 200 -

http.//localhost:5000/addjs?a=28&b=3

< C ® localhost:5000/addjs?a=28b=3

oo
oo

Impression €légante

{
"a": 2,
"b": 3,
"resultat": 5.5
}

from flask import Flask, request,
app = Flask(_ name)

.route ()
def accueil():
return

.route ()

def addition():
a = float (request.args.get |
b float (request.args.get (
return str(a + b + 0.5)

.route (3')
def additionijs():

a = float (request.args.get |
b = float (request.args.get (
return jsonify({ 5 By

if name ==

app.run()

jsonify

0))
0))

0))
0))

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

22

APl REST

import java.io.*
import java.net.*;
import java.util.Scanner;

* Serving Flask app 'jobintech'

* Debug mode: off public class TestFlaskAPI {
public static void main(String[] args) {
3 anum onhttp//127e 0.1:5000 Scanner sc = new Scanner(System.in);
t System.out.println("Saisir les deux variables a additionner :");
0.1 - — [11/Nov/2025 13:3u:21] "GET /addjs?a=2&b=3 HTTP/1.1" 200 - %t X
127.0.0.1 - - [11/Nov/2025 13:36:08] "GET /addjs?a=26b=3 HTTP/1.1" 200 - float x sc.nextFloat();
127.0.0.1 - - [11/Nov/2025 13:36:14] "GET /add?a=2&b=3 HTTP/1.1" 200 - float y = sc.nextFloat();

sc.close();

try {
URL url = new URL("http://127.0.8.1:5008/add?a=" + x + "&b=" + y);
HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setRequestMethod("GET");

BufferedReader in = new BufferedReader(neu InputStreamReader(con getInputStream()));
String line = in.readLine(); // lire la premigre ligne seulement
in.close();

Saisir les deux variables a additionner :

System.out.println("Résultat + line);

~ } catch (Exception e) {
Résultat : 24.5 e.printStackTrace();

}

C

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 23

Architectures orientées evénements

Une architecture orientée événements (EDA : Event-Driven Architecture) est un modele
d’'architecture logicielle basé sur la production et la consommation d'événements.
« Evénement : action ou changement d’état d’'une composante du systéme.
Exemple : {type: "Etudiantinscrit", EtudCIN: "JK6764"}

* Producteur: composante du systeme qui émet 'événement.
Exemple : le modele ou le service d'insertion dans la BD.

« Consommateur: composante qui souscrit a un événement pour effectuer une action.
Exemple : envoyer un SMS de bienvenue au nouvel étudiant inscrit.

« Canal de communication : moyen ou technologie qui permet d'échanger les messages et de
gérer les souscriptions.

L'EDA est Faiblement couplée, et la communication peut étre synchrone ou asynchrone.
« Adaptée aux applications modernes, distribuées, et en temps réel.
« Facilement scalable : rajouter de nouveaux producteurs ou consommateurs.

Une architecture microservices peut étre orientée événements.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 24

Architectures orientées evénements

Event-Driven Architecture of E-Commerce Site

— Event Producer — — Event Consumer —

i £ 2
w ¢-o &
Warehouse Mgmt DB

New Order Return

Retail website New Order
A customer places a The events trigger the
new order through warehouse to update
the website. : . inventory and item
Il uestion availability.
| B about stock
5
M\ —
N I H_]HHH > —_— ‘ —_ ‘ —_ _—
Mobile app —> —_— Finance System
A customer submits a Question Return New Order The events trigger the
question about the about stock finance system to update
availability of an item Event Router based on the sale and
through the app The router ingests, filters, return.
and pushes the events to v
New Order

the appropriate ‘
consumers. P

—_
=l >

L $ source : geeksforgeeks RIEE A
: Customer Relations
Point-of-Sale Return Question .
A customer returns an about stock The events trigger the
item in person at the customer team to
respond to the order and
inquiry.

store

25

ActiveMQ

Apache ActiveMQ est un broker de messages open-source implémenté en Java.
« Recoit des messages des producteurs et les achemine aux consommateurs.

Permet la communication asynchrone entre différentes applications ou services.
Supporte de nombreux protocoles standards (OpenWire, MQTT, STOMP, REST, ...), permettant
l'interaction avec des applications hétérogenes (C++, Python,).

Permet de découpler les composantes (microservices) dans une architecture logicielle :
« Les producteurs et les consommateurs échangent sans avoir besoin de se connaitre.
« Siune composante tombe en panne, les autres peuvent continuer a fonctionner.
« Les messages et les données échangées sont conservés (persistance) et ne sont pas perdus.

Queue (Point-a-Point) : un message envoyé a la file n'est recu que par un seul consommateur. Si
plusieurs consommateurs sont disponibles, ActiveMQ distribue les messages selon une stratégie
de répartition de charge (Round Robin).

Topic (Publisher/Subscriber) : tous les consommateurs qui se sont abonnés au topic recoivent
une copie du message quiy est publié.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 26

ActiveMQ

> activemq start

| send]| Réinitialiser |

Message body

e T T R -
1 ™ 1
I = I
The
! “8Wme"Apache |
| oftware Foundation !
| I . & o' & ttp://www.apache.org/ 1
1 |
1 Home | Queues | Topics | Subscribers | Connections | Network | Scheduled | Send Support | Logout 1
1 |
1 |
| i |
I' Send a JMS Message Rusue Views |
| 3 m Graph
1 Message Header = XML |
P TEECRRR |
1 Destination |foo.bar | Queue or Topic | Queue V| |
1 B H Topic Views '
: Correlation ID | | Persistent Delivery [= XML 1
1 Reply To | | Priority | | |
| Subscribers 1
| Type ' | Time to live] | Views 1
|
: Message Group | | Message Group Sequence Number 1 | e 1
| delay(ms) l | Time(ms) to wait before scheduling again] | M Useful Links :
! . . m Documentation 1
1 Number of repeats | | Use a CRON string for scheduling] | = FAQ
1 = Downloads 1
1 Number of messages to send | 1 | Header to store the counter 1JMSXMessageC0unter | m Forums 1
1 |
1 |
1 |
1 |
1 |
1 |

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

27

ActiveMQ

Publish-and-subscribe (1-+Many) L
; ® e
Publisher P —— s TOpl(x } s
........ &
........ 44 oty
Topicy | .o
Point-to-point (1-+1) @ Oy QueveA — freee.,, S "
......... ok J
Sender B Queue B b ® b
.......... 5

JMS messaging domains

Concurrent Consumers

Point-to-point (1-Many)

Sender

JMS messaging domains

3 Queue A

Subscriber listening topic x

Subscriber listening topic xand y

Potential |istening aueue a
receiver nox:

Potential ,. . .
feceiver |Stening queueb

Potential (iobaring atee
receiver - N

Potential

receiver UStening queuca

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

28

ActiveMQ

Producteur (Python)

import stomp

conn = stomp.Connection([('localhost', ©6l1l6l13)1]1)
conn.connect (login='admin', passcode='admin', wait=True)

f#gconn.send (body="'Message depuis Python !', destination='/queue/TEST.QUEUE')

conn. send (body='Messacge depuls Pyvthon 'y destination='/topic/TEST.TCPIC')

print ("Message envoyé a ActiveMQ !")

conn.disconnect ()

Les messages envoyés dans un topic/queue peuvent étre lus via REST :
http://localhost:8161/api/message/TEST.TOPIC?type=topic

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 29

ActiveMQ

Consommateur
(Python)

import stomp
import time

lclass MyListener (stomp.ConnectionlListener):
def on message(self message) :

print ('Message recu :', message.body)
conn = stomp.Connection([('lccalhost', 61613)])
conn.set listener('', MyListener())
conn.connect ('admin', 'admin', wait=True)
#conn.subscribe (destination="'/queue/TEST.QUEUE"
conn. subscribe (destination='"/topic/TEST.TOPIC
pPrint ("En attente de nouveaux messages ...")

try:
while True:
time.sleep(l)
lexcept KeyboardInterrupt:
conn.disconnect ()

id=l1,
1d=l,

ack=

fauto')
ack="autc

")

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

30

public class Producteur {

public static void main(String[] args) {
° Connection connection = null;
ACtlve M Session session = null;
MessageProducer producer = null;

try {

ActiveMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("tcp://localhost:61616");
connection = connectionFactory.createConnection();
connection.start();

session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
//Destinaticn destination = session.createQueue("TEST.QUEUE");
Destination destination = session.createTopic("TEST.TOPIC");
producer = session.createProducer(destination);

PrOdUCteur TextMessage message = session.createTextMessage("Message depuis JAVA !");
producer.send(message);
System.out.println("Message envoyé a ActiveMQ !");

(JAVA) } catch (Exception e) {

e.printStackTrace();
} finally {
try {
if (producer != null) producer.close();
if (session != null) session.close();
if (connection != null) connection.close();

} catch (Exception e) {
e.printStackTrace();
}

¥

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 31

ActiveMQ

Consommateur
(JAVA)

'import javax.jms.Connection;[]
public class Consommateur {

public static void main(String[] args) {
Connection connection = null;
Session session = null;
MessageConsumer consumer = null;

try {
ActiveMQConnectionFactory factory =

new ActiveMQConnectionFactory("tcp://localhost:61616");
connection = factory.createConnection();
connection.start();

session = connection.createSession(false, Session.AUTO ACKNOWLEDGE);
//Destination destination = session.createQueue("TEST.QUEUE");
Destination destination = session.createTopic("TEST.TOPIC");
consumer = session.createConsumer(destination);

System.out.println("En attente de nouveaux messages ...");
while (true) {

Message msg = consumer.receive();
if (msg instanceof TextMessage) {
System.out.println("Message recu : " + ((TextMessage) msg).getText());
¥
}

} catch (Exception e) {
e.printStackTrace();
}

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 32

Architecture en couches

« L'architecture en couches (Layered Architecture) organise

les composants

horizontalement,

responsabilité unique.

en couches a

« Chaqgue couche utilise les services de la couche inférieure
pour offrir des services a la couche supérieure (flux

généralement unidirectionnel).

« La plupart des architectures logicielles sont structurées

en 4 couches principales:

« Présentation (Ul) : gére linterface utilisateur et les
interactions (saisie, affichage, ...).

« Métier (Business) :

contient la logique métier de

l'application : regles, traitements, calculs, ...

« Persistence (Data Access) :

assure l'‘acces aux

données et l'interaction avec le systeme du stockage.

« BD (Database) :
physiquement les données.

représente le SGBD qui stocke

Request

N Components

Presentation Layer

Components

Components

Persistence Layer

Database Layer Components

Service

Ahmed Laatabi | ENSAM - Meknes | 2025-2026 33

Couches vs microservices

=

" - .

& ™ [Ul/ Presentation tier J
Ul / Presentation tier . ¢ A

. >

+
4 N\

Business Logic tier Micro- Micro- Micro- Micro-

L J service service service service

v A
(" R

Data Access tier

L 8 Data Stores

Data store
source : Munib Butt

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

CQRS

e L'architecture CQRS (Command Query Responsibility Segregation) sépare les opérations qui modifient 'état
du systeme (Command) des opérations qui lisent les données sans les modifier (Query).
o Onsépare entre les opérations de lecture (SELECT) de celles d'insertion, MAJ, et suppression.
o Deux composantes (objet, service) au lieu d'une qui géere les deux types d'opérations a la fois :
m Command Handler : exécute les requétes de modification (executeUpdate dans JDBC).
m Query Handler: exécute les requétes de lecture (executeQuery dans JDBCQ).

e Séparation des responsabilités:
o Meilleure gestion du business logic (séparation). :
e Optimisation et scalabilité indépendante : :
o Optimiser chaque composant selon la charge. E
o La lecture est souvent plus frégquente. !
e Flexibilité technologique: i
o Utiliser des technologies différentes et optimisées !
E '
]
]
[}
I
)
|
|
I
|

P —— . . L TR WS WS WS WS WS WE WE W WE W UR TR WE R WE W W UR TR VR UE W WA W WE VR W WS W R e W e e —— - -

Tables

| Eventual

(traitements) pour chaque composant. visomsistency

o Utilisation de BD différentes (SQL, NoSQL).
e Utilisation des Vues dénormalisées :
o Dans la méme BD ou dans une BD différente.
o Adaptation aux besoins de ['utilisateur (SELECT).

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 35

{ Read Database

Materialized
View

--

--------:-------J

Vue

e Une vue est une définition stockée d'une requéte SQL de type SELECT. Il s'agit d'une table virtuelle
contenant des champs et des colonnes. Elle permet d'éviter de retaper une méme requéte longue et
complexe (jointures multiples) a chaque fois (une vue = alias permanent d'une requéte).

o CREATE [ou REPLACE] VIEW inscriptions AS
SELECT e.nom AS Nom_Etudiant, f.nom AS Nom_Formation FROM Etudiants e, Formations f
WHERE e.id_formation = f.d;

o — SELECT * from inscriptions; 9

e Une vue matérialisée stocke physiqguement le résultat
) A N . . Changes to the table
d'une requéte — tres rapide mais consomme de Materialized
I'espace de stockage et peut devenir obsoléete. view

~

e Mise ajour des vues (dans le contexte CQRS) : ~ saL> SELECT]
o Le modele d'écriture produit des événements:
etudiant _created, formation_validated.

o Le modele de lecture met a jour les vues a partir

s 4 . View calculation
de ces événements — eventually consistent! source : QuestDB

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 36

Commands
Clients . 8 &
= -
3 58 b
| B B B
___________ —_— -
Queries

Aggregates
Business Logic

Query

Materialised
Views

//, N
p \
/
/
—I -
1 Event Streaming
! i Event Bus
- - H
: ------ e
\
\
\
N\ 7/
N\
~ 7 7
~ ~ _ P

Le broker recoit les messages de modification (create, update, delete) relatifs aux tables, les persistent pendant une durée
limitée, et les achemine aux consommateurs (subscribers) intéressés : exactement une fois (éviter la duplication des
traitements), et dans 'ordre (crucial pour la consistance). Grace a la persistance, les applications disposent de temps pour

propager les modifications (tolérance aux pannes, gestion de la charge, cohérence éventuelle).

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

37

Architecture Hexagonale (Ports & Adapters)

« L'architecture hexagonale (Ports and Adapters) permet de créer des composants faiblement
couplés. Elle repose sur la séparation du core de ['application des systémes externes (BD, Ul,
services tiers) :

« Noyau (Core) : contient la logique métier pure et ne dépend pas de |'extérieur.

« Ports : les interfaces (contrats) définies et exposées par le noyau pour communiquer en
entrée (recevoir des commandes pour lancer un processus métier : créer un étudiant) et en
sortie (émettre des commandes : requéte vers une BD, appeler un service tiers).

« Adaptateurs : les implémentations (situées a l'extérieur du noyau) concretes des ports pour
agir comme des intermédiaires entre le noyau et l'extérieur (adapter le format des données,
traduire des objets en requétes SQL, ...).

« Isolation complete de la logique métier.
« Scalabilité et maintenabilité faciles : on ne change pas la logique métier, mais uniguement les
adaptateurs, pour migrer par exemple de MySQL vers MongoDB.
« Enregistrement d'un nouvel étudiant : le noyau exprime un besoin, le port de sortie définit
'opération (quoi), 'adaptateur fournit l'implémentation (comment).

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 38

Architecture Hexagonale (Ports & Adapters)

interface PortEnregistrement {
void enregistrer (Etudiant etud):

class AdaptateurEnregistrementMySQL implements PortEnregistrement {

@Override
public void enregistrer (Etudiant et) {

// connexion JDBC, construction de la requéte SQL
// executeUpdate ("INSERT INTC Etudiants...")

class AdaptateurEnregistrementMongoDB implements PortEnregistrement {

@Override

public void enregistrer (Etudiant et) {
// connexion MongoDB, construction de la requéte

// db.insextOne({})

Adapters

Domain

Entities I

source : happycoders

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

39

JPA Hibernate

La mapping Objet-Relationnel (ORM : Object-Relational Mapping) est le processus de faire correspondre
des objets Java et des tables de BD.
« Interagir avec la BD sans écrire des requétes SQL (générées par 'ORM).

« L'API de Persistance Java (JPA : Java Persistence AP) est la spécification qui définit comment persister
des données dans Java.

« Hibernate est le framework ORM Java les plus populaire qui implémente la spécification JPA.
« Encapsulation des requétes SQL.
« (Gestion des transactions et des relations entre les entités.

« Un fichier de configuration XML (hibernate.cfg.xml) est une des méthodes pour configurer Hibernate :
il contient les détails de connexion, les classes a mapper, et d'autres parametres.

« Une classe Java est mappée a une table via 'annotation @Entity :
« @Table (nhame = “nom_table”) : spécifie le nom de la table si différent du nom de la classe.
« @Id: marque la clé primaire de 'entité.
 @GeneratedValue(strategy = GenerationType.IDENTITY) : indique que le ID est généré
automatiquement par la BD (AUTO_INCREMENT).

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 40

JPA Hi

bernate

Configuration

Transaction

Java Application

Persistence Objects

Hibernate Framework

Session factory Session

Criteria

source : medium

« DB Operatipns Zone »/

Y
(Perform save)
(Perform update)
(Perform delete)

(rol Iback transact_lonj

=
®

B DTN S S R A S
ol © (4 <)|
YR E T S a el st e Tl iy

= »

Ahmed Laatabi | ENSAM - Meknes | 2025-2026

41

JPA Hibernate

<?xml version='1.0' encoding="utf-8'?>

<hibernate:-configuration>
<session-factory>

{property
{property
{property
{property

{<property
{property

{property
{property

name="hibernate.
name="h1ibernate.
name="hibernate.
name="hibernate.

name="hibernate.
name="hibernate.

name="hibernate.
name="hibernate.

<mapping class="ma.ac.umi

</session-factory>
</hibernate-configuration>

.jobintech.Etudiant"”/>

connection.driver_class">com.mysql.cj.jdbc.Driver</property>
connection.url">jdbc:mysql://localhost:3306/hiberdb</property>
connection.username">root</property>
connection.password">1002</property>

dialect”>org.hibernate.dialect.MySQLDialect</property>

hbm2ddl . auto">update</property>
show_sql ">true</property>

format_sql ">true</property> Sy

@Table(name = "Etudiant")
public class Etudiant {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)

private int id;
private String nom;
private String prenom;
private float age;

public Etudiant() {}

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

42

JPA Hibernate

SessionFactory factory = new Configuration()
.configure("hibernate.cfg.xml")
// .addAnnotatedClass(Etudiant.class) //<mapping class=""/>
.buildSessionFactory();

Session session = null;
Transaction transaction = null;

try {
session = factory.openSession();

transaction = session.beginTransaction();

Etudiant etul = new Etudiant("name","prename", 44);
session.save(etul);

Etudiant etu2 = session.get(Etudiant.class, etul.getId());
etu2.setNom("Updated");

session.update(etu2);

Etudiant etu3 = session.get(Etudiant.class,7);
session.delete(etu3);

transaction.commit();

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

JPA Hibernate

« Quand le nom d'un champ dans la base de données est différent de l'attribut de la classe Java, on
utilise 'annotation : @Column(name = "nom_champ_table").
« On peut fournir les informations utiles a la génération du DDL si Hibernate est utilisé pour créer
automatiquement les tables : @Column(name="nom", length=20, nullable=false).

« On peutinteragir avec la BD en utilisant HQL (Hibernate Query Language) : un langage orienté objet qui
manipule les objets Java, non pas les tables de la BD (Hibernate traduit ensuite en SQL).
« Récupérer toutes les lignes:
List<Etudiant> list = session.createQuery("FROM Etudiant", Etudiant.class).list();

 Filtrer:
Etudiant etu = session.createQuery("FROM Etudiant e WHERE e.id =:id", Etudiant.class)
setParameter("id", 21).uniqueResult();
* Projeter:
List<String> noms = session.createQuery("SELECT e.nom FROM Etudiant e", String.class).list();

o Trier:
List<Etudiant> list = session.createQuery("FROM Etudiant e ORDER BY e.age ASC", Etudiant.class).list();

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 44

JPA Hibernate

« Lesannotations de jointure servent a définir les relations entre les entités et leur mapping dans la BD.

« @OneToOne :une liaison 1-1 entre deux entités. La FK est dans la table de la classe annotée.
@OneToOne
@JoinColumn(name = "mon_entité_id")
private Entité mon_entité;

« @ManyToOne : une liaison N-1 (plusieurs entités liées a une seule autre). La FK est dans la table de la

classe annotée (coté “N”).
@ManyToOne
@JoinColumn(name = "formation_id")
private Formation formation;

« On peut écrire une requéte HQL avec jointure pour récupérer les objets liés :
List<Object[]> results = session.createQuery("FROM Etudiant e INNER JOIN e.formation f").list();
for (Object[] res : results) {
Etudiant e = (Etudiant) res[0];
Formation f = (Formation) res[1];
System.out.println(e.getNom() + " :: " + f.getNom());

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

45

Exercice

Projet Hibernate-MySQL-CQRS-ActiveMQ

Mettre en place un projet Java utilisant Hibernate/JPA, CQRS et messaging avec ActiveMQ pour gérer les
inscriptions d'étudiants dans des formations.

Le projet doit séparer les responsabilités d'écriture (Command) et de lecture (Query) et garantir que la vue
des inscriptions deviendra éventuellement a jour aprés chaque modification.

Etudiant (id, nom, prenom, formation_id)

Formation (id, nom)

Inscriptions (id, etudiant_id, formation_id, nom_complet_etudiant, nom_formation) : table SQL pour
simuler une vue matérialisée (ici, dans la méme BD).

Modele d'écriture (Command) : gere la modification des tables Etudiant et Formation et notifie le
service de lecture (produit/publie un événement) via ActiveMQ (violation de SRP)).

Modele de lecture (Query) : consomme les événements, met a jour la vue Inscriptions et fournit les
requétes de lecture (les lectures se font uniquement via la vue Inscriptions) (violation de SRP).

Les Factory de connexions a la BD et a ActiveMQ sont centralisées : les objets SessionFactory
(Hibernate) et ActiveMOQConnectionFactory sont des singletons.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 46

